
AD-A273 256

US Army Corps
of Engineers
Hydrologic Engineering Center

Issues for Applications Developers

Technical Paper No. 139

January 1993

Approved for Public Release. Distribution Unlimi 93-29286
C' 'llll!H! !*

Papers in this series have resulted from technical actrties of the Hydrologic
Engineering Center. Versions of some of these have been published in
technical journals or in conference proceedings. The purpose of this series
is to make the information available for use in the Center's training program
and for distrbution within the Corps of Engineers

The findings in this report are not to be consbued as an official Department
of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
offidal endorsement or approval of the use of such commerial products.

NT15

INT1SPECTED 5

A7cý.•, ~

Issues for Applications Developers1

DARRYL W. DAVIS, BS, MS, Member ASCE
Director, Hydrologic Engineering Center, U.S. Army Corps of Engineers.

SUMMARY

Development of the right applications software for the water industry that is robust,
flexible, maintainable, and portable requires a strategy that determines user needs, creates
software in a develop, test, user feedback process, and includes training and support. Software
engineering decisions related to the choice of engineering methodologies, program architecture,
coding languages, graphics and other support libraries, and adoption of hardware and software
industry standards are critical to success. Development of engineering app!ications software is
best accomplished by organizations with experience in both the problem addressed and software
development and support.

1. INTRODUCTION

Applications software are important tools used by the water resources community for
planning, design and operation of water resource projects. Desktop hardware, operating systems,
coding languages, and a myriad of other factors have evolved such that the traditional applications
development environment of an engineer writing FORTRAN code is no longer appropriate. The
software used in the coming decade will be highly sophisticated from a technical standpoint,
constructed specifically for the user environment, and include advanced graphical display
capabilities.

There are several important questions for the water engineering community to address.
What should the software do? How and in which environment should it function? How should
this be determined? Who should develop this soft-are? Who (and how) should support the
software? How can the profession ensure that user needs will be adequately reflected? The
answers to these questions are of interest because a new generation of application's software is
under development by governments, academia, and the commercial sector. This paper summarizes
"truisms" related to engineering software development and technology transfer and offers
commentary related to these questions.

2. A PROVEN SOFTWARE DEVELOPMENT STRATEGY

A method for successfully accomplishing software development, implementation and
servicing is as follows: a) need for new methods and procedures surface through solving real-
world problems and maintaining contacts with the user community, b) research and development
work is performed to solve specific problems, c) solutions are generalized so that they may
service other problems, d) high quality documentation is developed and software is prepared for
long term service and maintenance, e) training courses are held and consultation projects
performed that gradually, but systematically, move the software into every day work of users, and
f) continuing development, servicing and maintenance are performed to assure aid to users and
guarantee up-to-date capabilities are incorporated.

2.1 Observations for Applications Package Developers

Several "truisms" have emerged that are applicable to the development and implementation
of engineering applications packages. These observations are directed to a unit in an institution
(public or private) that is developing new applications software and provides service and support
to in-house and other users.

a) Large scale, complex, comprehensive computer programs are dynamic entities that

1 Invited Keynote Presentation at WATERCOMP '93, 2nd Australasian Conference on Computing

for the Water Industry - Today and Tomorrow, 30 March - 1 April 1993, Melbourne, Australia.

require continuous nurturing and support in order to remain viable and useful. Such computer
software needs a permanent home; an institution that is philosophically committed to the
improvement in procedures, morally committed to servicing and improving the programs,
competently staffed to perform that task, and available *on call" to users.

b) Professionally developed computer program code and its management is vital for
software to be effectively maintained and be portable among hardware platforms. Use of special
purpose languages that are proprietary or are not generally within platform and software industry
standards should be avoided. Adherence to "standards! such as American National Standards
Institute (ANSI) language standards is important and use of modern programming practice is
needed to minimize difficulties in computer source code maintenance.

c) Successful implementation of advanced applications packages requires both useful
technology available in appropriate form and users that are interested and anxious to take
advantage of the opportunities. It is important in early stages to encourage applications that are
manageable and have potential for success. A commitment to a service attitude and genuine
interest in solving user community specific problems are basic.

A series of do's and do not's with supporting explanation follows which attempts do define
a framework and strategy for applications software development and implementation.

a) Engineering management should not "require' applications packages to be used before
considerable experience and shake-down is accomplished. Nothing kills interest in a new package
like forced use that does not deliver the solution to everyone's problems. New applications
packages can not be so tightly developed that they can survive an environment wherein the
potential users are put in a negative posture by the forced approach. A pragmatic, steady, gradual
introduction will likely result in early, meaningful use of the concepts and techniques. Nothing
draws users like success, no matter how small.

b) Avoid (if possible) the grand "demonstration" exercise. Application demonstrations
designed to sell technology often get too many people involved with parochial agendas. The
exercise often becomes rigged or fails because of the weight of so many observers. Dissemination
of basic information through publicizing applications is useful. Including sessions on the
application in seminars, general meetings, and training courses is an excellent method for exposing
applications packages to potential users.

c) Work With users to solve their problems. A full commitment to solving the users
problem is perhaps the single most important facet of successful technology transfer. An
approach that solves specific problems from which the elements are continuously merged into an
analytical system is more responsive to user needs than creating a grand solution that is then
adapted to a specific problem. It is not unusual for an application to have some unique twist.
Early implementation efforts should seek to work with users on specific studies.

d) Carefully select manageable studies or portions of studies for initial applications. This
is the operational implementation of the idea that nothing draws users like success, no matter how
small. The selection of small well-defined problems that both developers and users can learn from
and thus improve the program is important. A poor strategy attempts to "solve the unsolvable" as
an early application. There are always difficult problem: needing solution; build an experience
base before stretching too far. A series of small, growing to more comprehensive and difficult
applications over time is the desired strategy.

e) Be prepared and willing to perform logic and program code changes for early studies.
Developers usually can not foresee all potential study environments, objectives, data availability,
issues, etc. for which the software might be used. Design deficiencies, bugs, and errors will exist.
The attitude and ready resources to make the necessary adjustments will reflect the commitment
to a services approach to implementation.

2.2 Observations for Applications Package Users

The successful user is one that is confronted with a problem, has struggled to find a
solution, and recognizes that it could be at least partially addressed with the applications package.
The unsuccessful user is often the recipient of an applications package provided by a colleague or
superior. The colleague or superior was probably introduced to the software in a general way and
became convinced that it must surely have value, especially if appropriately used by others, (the
user) to solve his problems. With these positions defined, a few comments are offered below.

a) Know problems and needs in detail. There is a tendency for users, especially those
who are not highly computer oriented, to end up with their problems becoming defined by the
performance capabilities of a particular software package. This results in a reverse approach to
acquiring a high technology solution to a problem and is usually not the best approach.

b) Determine how the problem should be solved irrespective of the capabilities of
applications packages. Sophisticated applications packages require considerable commitment of
-resources, both dollars and manpower. The potential user should make certain that resources are
effectively used to accomplish the problem solution that generated the search for the applications
package.

c) Thoroughly investigate features and capabilities of alternative applications packages.
Applications packages come in integrated hardware-software arrangements, software alone, or
just specific-task oriented software. Important issues are propriety of the package (Is a license
required and what are the costs and restrictions?), specialized nature of hardware platforms and
peripherals, software package adherence to standards, documentation, service, training, and
compatibility with existing and future equipment and people. What is right for one circumstance
may not be relevant to another.

d) Do not expect magic. Applications packages performance between hardware and
system environments can vary greatly. While one should prudently seek a package that has a
record of minimum difficulties, it is best to plan for at least some start-up time and remain
flexible. Start-up should be well planned and involve user representatives.

e) Willingly commit the personnel resources to "own" the applications package. A major
shortcoming in the effective use of sophisticated applications packages is the unwillingness of
potential users to devote adequate time and energy to *own* the software package in an
applications sense. Most capable engineering applications packages are sufficiently sophisticated
that continuous use and familiarity by the users is needed to maintain effectiveness.

f) Continuously ask questions of the developers and user supporters. Probe the limits of
capabilities, and presume sophisticated software should be continually adapted and improved over
time. A package frozen in capability from installation date is one that will soon be unresponsive
to the needs of the users. When evaluating and using engineering products, it is of primary
importance that the user truly understand the product. A first-rate engineer that truly knows
what he is doing will likely produce a better solution using a second-rate applications product,
than a second-rate engineer could do using a first-rate applications product he doesn't understand
well.

3. DEVELOPING THE RIGHT APPLICATIONS PACKAGE

Determining user needs is the critical first step in the development of a successful
applications package. Software engineering, a discipline that addresses the complete software
development cycle, continues to propose, test, and refine strategies for ensuring successful
software development projects. A popular software engineering approach often referred to as the
"waterfall model* includes performing the following: requirements analysis, preliminary and final
design, coding, testing, deployment, and service and support. The process is conceived of as once
through, beginning to end, permitting an efficient, manageable, production oriented approach.

Users define the needs and software specialists design, code, test, and deploy the product. Some
interaction with users is anticipated during the development process.

Experience suggests that while this approach is a useful framework, development of
successful engineering applications software is best served by a less formally structured, multi-
pass approach. The organization and its staff that is assigned the development project is
important. Organizations and staff that have experience in performing studies in the technical
area of interest, developing and dcploying applications packages, and training and support are best
suited to performing the work.

The requirements analysis step is useful and essential. Preliminary requirements are
defined by a development team in consultation with a selected group of user representatives. The
preliminary requirements are documented and circulated among a larger user group for comments
and input. Final requirements are then prepared by the developers in consultation with the
selected group of users. Development of a prototype (or limited-scope preliminary version) can
be very helpful at this stage by providing a real, functioning program (as compared to a paper
plan) to which potential users may respond. A certain amount of design will have taken place
during the prototype development. Its best to take time to perform a complete conceptual design
that will be tested in the prototype development. Flexibility for future improvements key.

Development of the applications package can then be undertaken as a production process.
For a sophisticated and capable engineering applications package, the development team should be
comprised of a specialist in the technical applications area (often the team leader), and a
complement of computer scientists, programmers, and consultants. In today's technology
environment, the development of an engineering applications product requires the combined
talents of knowledgeable engineer-practitioners and skilled computer science specialists. It is no
longer possible for a few engineers to possess the broad range of skills necessary to produce a
satisfactory product. Not all team members need to be full-time on the project. The consultants
may be from other groups in the organization or procured via contract to provide limited scope,
highly specialized knowledge that is essential in the extremely capability-rich yet complex
hardware and systems environment.

Development should be staged so that usable products emerge in a regular manner
throughout the development period. Product releases should be often enough to provide the user
community with the opportunity to observe progress and provide feedback on needed capabilities,
but not so often as to create a climate of turmoil and distraction for the developers. Six-month
intervals is probably too short with one-year intervals about right. The first release after the
prototype should be a preliminary yet fully functional package. Early releases should be to
selected users that are willing to apply the package to real problems but who are familiar with
software development so that difficulties that will arise are not unexpected.

4. HARDWARE, OPERATING SYSTEM, CODING, AND RELATED STANDARDS

Today the typical engineering computing environment has become the desktop machine.
It is likely to be a high-end personal computer with an Intel 486 processor (soon to be succeeded
by PS), or a RISC-chip based engineering workstation (or X-Terminal to a workstation) equipped
with a high resolution color monitor. The desktop machine is connected to other workstations,
file servers, laser printers, plotters and other devices via a local area network. In some instances,
access to regional centers and other national and international sites is available through network
gateways to world-wide communication facilities.

The software developer must design and develop applications packages to take advantage
of the opportunities provided by this rich environment. Developers must be careful to avoid
constructing applications that exhibit hardware and system dependencies that adversely affect
code portability, future upgrades, and long-term servicing. Most software industry professionals
and users generally agree that these notions are highly desirable; the goals are easy to articulate.
The pay-off is in the successful translation into software development strategies, standards,

criteria, and ultimately computer code that achieves those goals.

4.1 Hardware/operating System

Hardware and associated "chip* families, operating systems, and binary (compiled and
linked) code compatibility are tightly connected. For example, MS-DOS [1] and Microsoft
Windows [2] operate within the Intel-chip family of personal computers and thus binary code is
compatible among machines. There are a variety of RISC chips that are used in workstations.
Binary code is generally compatible within a chip family (vendor product line); for example
among the IBM RISC-chip workstation line of computers, but not across chip/vendor computers.
UNIX [31 is the standard operating system for RISC-chip engineering workstations providing code
compatibility at the source (not binary) level. While this is not particularly important for the user,
it is extremely important for program developers.

Minimum hardware configuration and specifications that can be expected for the
engineering desktop for the next few years are as follows:

Personal Computer, Intel 486/66 mhz processor, 8 to 32 MB RAM, 200 to 600 MB disk,
14" Super VGA monitor, networked to plotters and printers, DOS/Windows operating
environment.

Workstation: RISC-chip/50 mips processor, 32 MB RAM, I gigabyte disk, 17* monitor,
networked to other workstations and peripherals locally and regionally, UNIX operating
system.

For the personal computer, DOS has been the unquestioued standard for office automation
applications. While there are a number of capable engineering applications packages running in
DOS, the future seems to be toward multi-tasking, window-based systems. Candidates are
Microsoft Windows (soon to be Windows NT [4]), OS/2 Presentation Manager [5], and UNIX. In
the RISC-chip based workstation environment, UNIX is the standard, with the possibility that
Windows NT might soon be a competitor for some chip families. It is important to maintain
adherence to a standard, such as Posix [6] to ensure cross UNIX platform compatibility.

For the software developer, the issue is therefore what hardware configuration, likely
operating systems, coding languages and associated compilers, third-party fibraries, etc. will
enable the desired performance, portability, upward compatibility, and service support needed for
the applications package. The likelihood is that packages will need to be functional in both
environments. The appropriate strategy to follow is to code the application using languages,
libraries, utilities etc. that make it least painful to port to other platforms. This is easier said than
done.

4.2 Programming Philosophy, Languages, and Related Issues

The application package to be developed must ultimately be coded in a computer language,
compiled, and linked into binary code for execution on a specific platform. Various programming
strategies, languages, and use of commercial utilities and libraries are employed. Historically,
engineering applications programs were developed by an engineer programming in FORTRAN
and following the ANSI language standard. Often the program in current use was originally coded
in FORTRAN II, with subsequent improvements coded in FORTRAN IV, 66, and 77 and ported
and re-compiled for the successor generation platforms. This continued to be successful and
relatively simple while programs read mostly number and character input and output the same.

The base engineering functions that implement the solution algorithms are becoming more
and more transportable across a wide variety of chip families. This is true whether they are coded
in FORTRAN, C [7], or another popular language. Data base access, graphical user interfaces
(GUI), and visualization tend to inhibit transportability across platforms at the current time. New

languages have emerged responsive to the needs, and an impressive array of commercial libraries
and higher level coding aides are available to be used by the programmer. While no definitive
consensus has emerged, there are a number of logical strategies to consider in programming the
applications package.

The graphical user interface is the boon and the bane of the programmer. It offers the
opportunity to create a comfortable and highly productive user environment. The developer must
be careful, however, to avoid dressing up a poor or outdated engineering solution with an
attractive user interface. The engineering algorithms must be top-notch in order to warrant the
considerable effort to create a productive GUI.

Most recently developed GUI are coded in C using standard Motif [8] and X Windows [9)
library functions because of the platform portability and power in providing direct programmer
control of the user-device interface. A programming concept referred to as object-oriented
programming (OOP) [101 is emerging as an important player in the user interface, as well as
other, programming areas. It's reported power is that of enabling the creation and man:;oulation

.of reusable coded objects that can substantially improve the robustness and maintainability of the
software and productivity of the programmer. The coding language that is gaining a following for
implementation of OOP is C-+ [111]. A number of major commercial software vendors are
reported to have adopted C++ for their own new program development. Motif and Open Look
[12] provide widget libraries that prescribe a standard look and feel for constructing GUI's in the
X Window system. X Windows is the de facto standard windowing system for the UNIX
operating system. In the DOS environment, Microsoft Windows is dominant with IBM OS/2
Presentation Manager also a player.

Unfortunately, a GUI developed following standards in the UNIX workstation
environment is not directly portable to Microsoft Windows, and vice versa. Since engineering
applications packages will most likely need to function in both systems, a dilemma exists. One
approach is to develop separate GUI's for each environment. While unattractive, its done in the
commercial sector. Another is to use proprietary GUI builder libraries and cross platform
compilers. This is also unattractive, perhaps even more so. The best approach seems to be to
proceed with development following the prevailing standard in each (say Motif and Microsoft
Windows), isolate the code related to the GUI from other program functions, and take care to be
as consistent between both environments as possible. One also hopes that the next few years
continues the trend toward a common operating system and attendant GUI standards that will
serve both environments.

The majority (perhaps above 90%) of currently used engineering applications program
"enginese, the engineering algorithm solution portion of the program, are coded in FORTRAN.
This is likely to continue for some time for new programs as well. This is both because
engineering programs tend to be developed by engineers, and routines from the substantial
inventory of functioning FORTRAN programs will be re-used in new programs. FORTRAN 90
[13], the next ANSI FORTRAN standard, offers new data structures, dynamic memory, and other
desirable attributes. Some industry observers have suggested that future FORTRAN standards
and extensions will implement OOP concepts more fully. A number of software development
projects [14], are being developed with OOP concepts using C++ for the overall program
architecture, C where necessary, and FORTRAN for some compute functions.

4.3 Graphics

Increasing use of display and output graphics (often referred to as visualization) is the
emphasis for the future for engineering applications packages. Coding the graphics routines using
primitive, basic level intrinsics from libraries may be logical and practical for mass market
commercial software firms. It is not often practical for the more limited market of engineering
applications programs. Making calls from the applications program to graphics functions routines
is more common. The question then is which package of graphic function routines should be
used? Again, the circumstance is complicated so the best choice is not obvious.

The choices reduce to selecting from commercial and public domain packages (there are
quite a number) such as UNIRAS [15] and InterViews [16] that provide graphics products on-the-
fly from simple program level calls. Decision factors include capability, licensing and fee
arrangements, documentation and support, platform availability, and success history in the market
place. AU things being equal, one would select the package that has adequate capability, is in the
public domain thus minimizing licensing and fee issues, is available for target workstation and
personal computer platforms, and is reasonably documented and supported.

No package has emerged that has gained significant market acceptance that supports both
workstation and personal computer platforms. If the application will be run only in the Microsoft
Windows environment and the Windows graphics library is adequate, it is an attractive choice.
This is not often the case but in the near term, it may be a reasonable alternative for the personal
computer implementation of the applications package. The use of X Windows libraries provide
such capabilities in the UNIX environment. No clearly dominant commercial or public domain
high-level graphics support package has emerged for programming applications for either
Microsoft windows or X Windows workstations. It is desirable that products be developed such
that they may interface to still-higher level graphics capabilities available in geographic
information systems packages.

4.4 Data Base Support

An important issue for software development projects is providing for data persistence
necessary to support the GUI, graphics, and technical analysis envisioned. Depending on the
applications package, many data types must be addressed. These could include time-series,
(hydrologic data), paired-function (x,y tabulations), model-parameter, stream-geometry, and
spatial and image data. Data base management systems were created to meet such needs. The
larger, more complex in scope the applications package, the more likely that significant amounts
of data of several types might be important. No single data base system, commercial or private,
seems to offer efficient management for the full range of data types. Commercial systems, for
example ORACLE [17], offer great capability for managing relational data, but limited capability
for time series data. Specialized systems, for example HEC-DSS [18], are optimized for time-
series and paired-function data.

Developers should carefully analyze the data management needs for their specific
applications package, and design early, the approach to be taken. The increasing availability of
industry-wide and regional data bases that may be useful for application packages warrants
consideration in program design. Also, the need to share (or pass to the next step in design),
engineering data is an issue that should be considered as well. Whether to design a custom-coding
solution, or choose from commercial and public domain data base packages is a decision that
should consider portability, license and run-time fees, programmer effort to implement, and
requirements for long term service and support.

5. CONCLUSIONS

Successful development of the right engineering applications software packages requires
adopting a strategy that determines user needs, and accomplishes development in a develop, test,
user feedback process. Application package development should be performed by organizations
that have experience in solving engineering problems in the field, experience in developing,
deploying, maintaining and supporting applications software, and are committed to a services
approach to users. The development team should be comprised of a technical specialist in the
applications area, and a complement of computer scientists and programmers. The engineering
desktop platforms for the next few years includes high-end Intel-chip personal computers and
RISC-chip based workstations. Use of modern software architecture concepts to include OOP,
application of standard programming languages, and adherence to published software standards
(where they exist) and de-facto industry standards is essential to ensure successful applications
package development.

6. ACKNOWLEDGEMENTS

The views expressed in this paper are a synthesis of the experience of the staff of the
Hydrologic Engineering Center. This experience was gained from 25 years of developing and
supporting engineering applications software for the U.S Army Corps of Engineers.

7. REFERENCES

1. Microsoft Corporation, "MS-DOS User's Guide and Reference Version 5.0", Microsoft
Corporation, 1991.

2. Microsoft Corporation, "Microsoft Windows Version 3.1 User's Guide", Microsoft
Corporation, 1992.

3. Rosen, Kenneth H., Rosinski, Richard, R., and Farber, James M., "UNIX System V Release
4: An Introduction", Osborne McGraw-Hill, 1990.

4. Microsoft Corporation, *Microsoft WIN32 SDK for Windows NT (Preliminary)", Microsoft
Corporation, 1992.

5. IBM Corp., "Operating System/2 Standard Edition User's Reference", IBM Corp., 1987.

6. Levine, Donald A., "Posix Programmer's Guide", O'Reilly & Associates Inc., 1991.

7. Kernigham, Brian W., Ritclhie, Dennis M., "The C Programming Languagen, Prentice Hall,
1988.

8. Open Software Foundation, "OSF/Motif Programmer's Reference, Prentice Hall, 1991.

9. Asente, Paul, and Swich, Ralph, "The X Window System Toolkit", DEC Press, 1990.

10. Cox, B., "Object-Oriented Programming: An Evolutionary Approach", Addison-Wesley,
1986.

11. Ellis, Margaret A., and Stroustrup, Bjarne, "The Annotated C++ Reference Manual",
Addison-Wesley, 1990.

12. Sun Microsystems, Inc., "OPEN LOOK Graphical User Interface Functional Specification",
Sun Microsystems, Inc., 1989.

13. Microsoft Corporation, "Microsoft FORTRAN Version 5.1 Reference Guide", Microsoft
Corporation, 1992.

14. Davis, Darryl W., "The HEC NexGen Software Development Project", Proceedings of
Watercomp93, The Institution of Engineers, Australia, 1993.

15. UNIRAS A/S, "agX/Toolmaster Reference Manual", UNIRAS A/S. 1991.

16. Linton, Mark A., Vlissides, John M., and Calder, Paul R., "Composing User Interfaces with
InterViews", IEEE Computer, Vol. 22, No.2,1989.

17. Oracle Corporation, "Professional ORACLE 5.1A Reference Manual", Oracle Corporation,
1988.

18. USACE Hydrologic Engineering Center, "HEC-DSS User's guide and Utility Program
Manuals", 1990.

TECHNICAL PAPER SERIES
($2 per piper)

TP-1 Use of Interrelated Records to Similate TP-37 Doonstresm Effects of the Levee Overtopping at
Stresmflow Wilkes-Sarre, PA, ODuing Tropical Storm Agnes

TP-2 Optimization Teckniques for Hydrologic TP-38 Water Quality Evaluation of Aquatic System
Engineering TP-39 A Method for Analyzing Effects of Dan Failures

TP-3 Methods of Determination of Safe Yield and in Design Studies
Co•pnsati n, Water from Storage Reservoirs TP-40 Storm Drainage and Urban Region Flood Control

TP-4 Functional Evaluation of a Water Resources Planning
System TP-41 NEC-SC, A SimuLation Model for System

TP-5 Streamflow Synthesis for Ungaged Rivers Formulation and Evaluation
TP-6 Simulation of Daily Streamflow TP-42 Optimal Sizing of Urban Flood Control Systems
TP-7 PiI't Study for Storage Requirements for TP-43 Hydrotogic and Economic Simulation of Flood

Lo, Flow Augmentation Control Aspects of Water Resources System
TP-8 Worth of Stremaflow Data for Project TP-4" Sizing Flood Control Reservoir System by

Design - A Pilot Study Systemam Analysis
TP-9 Economic Evaluation of Reservoir System TP-45 Techniques for Real-Tim Operation of Flood

AccompLishmants Control Reservoirs in the Merrimack River
TP-1O Hydrologic Simulation in Water-Yield Basin

Analysis TP-46 Spatial Data Analysis of NonstructuraL
TP-11 Survey of Program for Water Surface Measures

Profiles TP-47 Comprehensive Flood Plain Studies Using
TP-12 Hypothetical Flood Compiuation for a Spatial Data Nan•gement Techniques

Stream System TP-48 Direct Runoff Hydrograph Parameters Versus
TP-13 Naximum Utilization of Scarce Data in Urbanization

Hydrologic Design TP-49 Experience of NEC in Disseminating Information
TP-14 Techniques for Evaluating Long-Tem on Hydrological Models

Reservoir Yields TP-50 Effects of Dam Removal: An Approach to
TP-15 Hydrostatistics - Principles of Sedimentation

Application TP-51 Design of Flood Control Iiprovements by
TP-16 A Hydrologic Water Resource System Systems Analysis: A Case Study

Modeling Techniques TP-52 Potential Use of Digital Computer Ground Water
TP-17 Hydrologic Engineering Techniques for Models

Regional Water Resources Planning TP-53 Development of Generalized Free Surface Flow
TP-18 Estimating Monthly Streawflows Within a Models Using Finite Element Techniques

Region TP-54 Adjustment of Peak Discharge Rates for
TP-19 Suspended Sediment Discharge in Stream Urbanization
TP-20 Computer Determination of Flow Through TP-55 The Development and Servicing of Spatial Data

Bridges Management Techniques in the Corps of
TP-21 An Approach to Reservoir Temperature Engineers

Analysis TP-56 Experiences of the Hydrologic Engineering
TP-22 A Finite Difference method for Analyzing Center in Maintaining Widely Used Hydrologic

Liquid FLow in Variably Saturated Porous and Water Resource Computer Models
"Media TP-57 Flood Damage Assessments Using Spatial Data

TP-23 Uses of Simulation in River Basin Planning Management Techniques
TP-24 Hydroelectric Power Analysis in Reservoir TP-58 A Modet for Evaluating Runoff-Quality in

Systems Metropolitan Master Planning
TP-25 Status of Water Resource System Analysis TP-59 Testing of Several Runoff Models on an Urban
TP-26 System Relationships for Panama Canal Watershed

Water Supply TP-60 Operational Simulation of a Reservoir System
TP-27 System Analysis of the Panama Canat Water with Pumped Storage

Supply TP-61 Technical Factors in Small Hydropower Plmaning
TP-28 Digital SimutLtion of an Existing Water TP-62 Flood Hydrograph and Peak Flow Frequency

Resources System Analysis
TP-29 Computer Applications in Continuing TP-63 HEC Contribution to Reservoir System Operation

Education TP-64 Determining Peak-Discharge Frequencies in an
TP-30 Drought Severity and Water Supply Urbanizing Watershed: A Case Study

Dependabili ty TP-65 Feasibility Analysis in Small Hydropower
TP-31 Development of System Operation Rules for Planning

an Existing System by Simulation TP-66 Reservoir Storage Determination by Computer
TP-32 Alternative Approaches to Water Resource Simulation of Flood Control and Conservation

System Simulation System
TP-33 System Simulation for Integrated Use of TP-67 Hydrologic Land Use Classification Using

Hydroelectric and Thermal Power Generation LANDSAT
TP-34 Optimizing Flood Control Allocation for a TP-68 interactive NonstructuraL Flood-Control

Multipurpose Reservoir Planning
TP-35 Computer Models for Rainfall-Runoff and TP-69 Critical Water Surface by Minimum Specific

River Hydraulic Analysis Energy Using the Parabolic Method
TP-36 Evaluation of Drought Effects at Lake TP-70 Corps of Engineers Experience with Automatic

Atitlen Calibration of a Precipitation-Runoff Model

TP-71 Determination of Lend Use from Satellite TP-104 Modeling Water Resources System for Water
Inmgery for Input to Hydrologic Models Quality

TP-72 Application of the Finite Element Method TP-105 Use of a Two-DimansionaL Flow Model to
to Vertically Stratified Hydrodynamic Flow Quantify Aquatic Habitat
and Water Quality TP-106 Flood-Runoff Forecasting with NEC-IF

TP-73 Flood Mitigation Planning Using NEC-SAN TP-107 Dredged-Material Disposal System Capacity
TP-7T Nydrographs by Single Linear Reservoir Expansion

Model TP-108 Rote of Small Comuters in Two-Dimaensionrl
TP-75 NEC Activities in Reservoir Analysis Flow Modeling
TP-76 Institutional St4*ort of Water Resource TP-109 One-Dimansionat Model For "ud FlOWs

Models TP-110 Subdivision Froude NI•.ber
TP-77 Investigation of Soil Conservation Service TP-111 REC-SO: System Water Quality modeling

Urban Hydrology Techniques TP-112 New Developments in NEC Program for Flood
IP-78 Potential for Ir-reesing the Output of Control

Existing Hydroelectric Plants TP-113 Modeling and Managing Water Resource System
TP-79 Potential Energy and Capacity Gains from for Water Quality

Flood Control Storage Reallocation at TP-114 Accuracy of Computed Water Surface Profiles -

Existing U. S. Hydropower Reservoirs Executive Sumary
TP-80 Use of Non-Sequential Techniques in the TP-115 Application of Spatial-Date Management

Analysis of Power Potential at Storage Techniques in Corps Planning
Projects TP-116 The NEC's Activities in Watershed Modeling

TP-81 Data Hanagement Systems for Water TP-117 NEC-1 and NEC-2 Applications on the
Resources PLanning NicroComputer

TP-82 The New NEC-I Flood Nydrograph Package TP-118 Real-Tim Snow Simulation Model for the
TP-83 River and Reservoir Systems Water QuaLity Monongahela River Basin

Modeling Capability TP-119 Multi-Purpose, Multi-Reservoir Si.ulation on a
TP-84 Generalized Real-Tim Flood Control System PC

Model TP-120 Technology Transfer of Corps' Hydrologic
TP-85 Operation Policy Analysis: Sm Rayburn Models

Reservoir TP-121 Development, Calibration and Application of
TP-86 Training the Prectitioner: The Hydrologic Runoff Forecasting Models for the Allegheny

Engineering Center Program River Basin
TP-87 Documentation Needs for Water Resources TP-122 The Estimation of Rainfall for Flood

Models Forecasting Using Radar and Rain Gage Date
TP-88 Reservoir System Regulation fur Water TP-123 Developing and Managing a Comprehensive

Quality Control Reservoir Analysis Model
TP-89 A Software System to Aid in Making TP-124 Review of the U.S. Army Corps of Engineering

Reas-Tim Water Control Decisions Involvement With Alluvial Fan Flooding
TP-90 Calibration, Verification and Application Problem

of a Two-Dimensional Flow Model TP-125 An Integrated Software Package for Flood
TP-91 NEC Software Developmet and Support Damage Analysis
TP-92 Hydrologic Engineering Center Planning TP-126 The Value and Depreciation of Existing

Hod.ts Facilities: The Case of Reservoirs
TP-93 Flood Routing Through a Flat, Complex TP-127 FLoodpLain-Managemnt Plan Enumeration

Flood Plain Using a One-Dimensional TP-128 Two-Dimensional Floodplain Modeling
Unsteady Flow Computer Program TP-129 Status and New Capabilities of Computer

TP-94 Dredged-Material Disposal Management Model Program HEC-6: uScour and Deposition in
TP-95 Infiltration and Soil Moisture Rivers and Reservoirs"

Redistribution in NEC-1 TP-130 Estimating Sediment Delivery and Yield on
TP-96 The Hydrologic Engineering Center Alluvial Fans

Experience in Nonstructural Planning TP-131 Hydrologic Aspects of Flood Warning -
TP-97 Prediction of the Effects of a Flood Preparedness Programs

Control Project on a Meandering Stream TP-132 Twenty-five Years of Developing, Distributing,
TP-98 Evolution in Computer Programs Causes and Supporting Hydrologic Engineering Comuter

Evolution in Training Needs: The Programs
Hydrologic Engineering Center Experience TP-133 Predicting Deposition Patterns in Smat Basins

TP-99 Reservoir System Analysis for water TP-134 Annual Extreme Lake Elevations by Total
Quality Probability Theorem

TP-100 Probable Maximum Flood Estimation - TP-135 A Muskingum-Cunge Channel Flow Routing Method
Eastern United States for Drainage Networks

TP-101 Use of Computer Program HEC-5 for Water TP-136 Prescriptive Reservoir System Analysis model -

Supply Analysis Missouri River System Application
TP-102 Rote of Calibration in the Application of TP-137 A Generalized Simulation Model for Reservoir

NEC-6 System Analysis
TP-103 Engineering and Economic Considerations in TP-138 The NEC NexGen Software Development Project

Formilating TP-139 Issues for Applications Developers

UgNCLASS I F I D 7GSE;URITY CLA551FICATION OF THIS AGE

Form ApprovedREPORT DOCUMENTATION PAGE oMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSI FI ED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

UNLIMITED
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TECHNICAL PAPER NO. 139

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
HYDROLOGIC ENGINEERING CENTER (If applicable)
USA CORPS OF ENGINEERS CEWRC-HEC

6r. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

609 SECOND STREET
DAVIS, CA 95616-4687

&a. NAME OF FUNDING iSPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

WATER RESOURCES SUPPORT CENTER CEWRC
Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

CASEY BUILDING # 2594 PROGRAM PROJECT TASK . WORK UNIT
FT BELVOIR, VA 22060-5586 ELEMENT NO. NO. NO. CCESSION NO.

11. TITLE (include Security Classification)

Issues for Applications Developers

12. PERSONAL AUTHOR(S)

DARRYL W. DAVIS
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAG. COUhT

TECHNICAL PAPER FROM TO 1993 JANUARY 11
16. ISUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary .and identify by block numl'er)
FIELD GROUP SUB-GROUP computer software, computer applications, computer models,

water resources, hydrology, hydraulics

19, ABSTRACT (Continue on reverse if necessary and identify by block number)

Development of the right applications software for the water industry that is robust,
flexible, maintainable, and portable requires a strategy that determines user needs, creates
software in a develop, test, user feedback process, and includes training and support.
Software engineering decisions related to the choice of engineering methodologies, program
architecture, coding languages, graphics and other support libraries, and adoption of
hardware and softw'are industry standards are critical to success. Development of engineerin
applications software is best accomplished by organizations with experience in both the
problem addressed and software development and support.

20. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

rII UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C) DTIC USERS UNC LASS I F I ED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DARRYL W. DAVIS (916) 756-1104 CEWRC-HEC
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNL LAb I I- I ':

